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Comparative study of 3D morphology and functions on genetically

engineered mouse melanoma cellsw
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Quantification of 3D morphology and measurement of cellular functions were performed on the

mouse melanoma cell lines of B16F10 to investigate the intriguing problem of structure–function

relations in the genetically engineered cells with GPR4 overexpression. Results of 3D analysis of

cells in suspension and phase contrast imaging of adherent cells yield consistent evidence that

stimulation of the proton-sensing GPR4 receptor in these cells may modify significantly their

morphology with diminishing ability to produce membrane protrusions and to migrate.

Examination of the 3D parameters of mitochondria provide further insights on the measured

variation of the maximal capacity of oxygen consumption rate among the genetically modified

cells, indicating that the proton-sensing receptor may regulate cancer cell metabolism with

increased mitochondrial surface area. Our study demonstrates clearly the significant benefits of

quantitative 3D morphological study in illuminating cellular functions and development of novel

morphology based cell assay methods.

Introduction

It has long been known that differentiated organisms perform

their functions with specialized morphologies, i.e., forms and

structures, as elegantly discussed by D’Arcy Thompson nearly

a century ago.1 Indeed most classification schemes of biological

cells are established on the basis of morphology ranging from

leukaemia diagnosis to functional grouping of phytoplankton.2,3

The enormous advances in molecular biology over recent

decades have provided details on the mechanisms underlying

the structure–function relation at the molecular levels and

stimulate further interests for quantitative knowledge of

three-dimensional (3D) morphology. However, 3D study of

cell morphology remains very limited, and it is not certain that

such a study can be particularly illuminating to important cell

biology problems like the effect of genetic modification.

For example, investigations of migration and metabolism of

cells in response to their microenvironment are essential to

the study of tumorigenesis, which is a multi-step process that
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Insight, innovation, integration

With development of an accurate image analysis software we

demonstrate that quantitative analysis of 3D cell morphology

provides critical insights on the migration capability and

metabolism of B16F10 cancer cells modified genetically with

GPR4 overexpression. Consistent evidence in support of the

structure–function relation in the genetically engineered cells

has been obtained through an innovative and integrated

approach of 3D reconstruction and morphological analysis

of suspended cells and functional measurement of

attachment and migration of adherent cells. The widely

available confocal microscopy resources allow the 3D

morphology approach presented here to be extended for

investigation of other cellular functions and acquisition of

morphological features correlating with light scattering

patterns of cells for future development of diffraction

imaging flow cytometry.
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involves the accumulation of genetic and epigenetic alternations

and the somatic evolution of transformed cells largely dictated

by the Darwinian principles.4–6 The interaction between cancer

cells and the tumor microenvironment is critical for disease

progression as illustrated by the ‘‘seed and soil’’ hypothesis.7 As

a result of gene mutations and somatic evolution, cancer

exhibits several distinct hallmarks such as limitless replicating

potential, evasion of apoptosis, induction of angiogenesis, tissue

invasion and metastasis, deregulated energetic metabolism, and

genomic instability.5 Due to functionally defective blood vessels

and glycolytic cancer metabolism, known as theWarburg effect,

hypoxia and acidosis are characteristic biochemical features of

the tumor microenvironment and play essential roles in cancer

somatic evolution and therapeutic responses.4,6 Nevertheless,

the molecular mechanisms by which tumors respond to the

acidic microenvironment are poorly understood. In a recent

study we have demonstrated that acidosis stimulation of the

proton-sensing GPR4 receptor inhibits tumor cell migration

and metastasis.8 Therefore, one would be interested to gain a

comprehensive knowledge about the morphological changes in

cells allowing the regulation of their migration and metabolism

by overexpression of GPR4 in the tumor cells.

Beside its fundamental significance, quantification of 3D

morphology can yield powerful criteria of classification for

morphology based assay of cells without the need for fluorescent

labeling. In an ongoing study of flow cytometry, we have

demonstrated the possibility for rapid analysis of different cancer

cell lines based on their 3D morphological features by utilizing

the strong correlation between cell morphology and texture

features of diffraction images.9–11 Since the diffraction images

present the angle-resolved distribution of the light scattered

from the single cells excited by a coherent laser beam, the

image textures or diffraction patterns are consequence of the

intracellular distribution of refractive index or 3Dmorphology.12–15

The technique of diffraction imaging has been used in many fields

to obtain 3D morphology of particles on the spatial scales

commensurate with the wavelengths of the excitation fields, as

exemplified by the structural determination of particles ranging

from DNA to intracellular organelles with X-ray radia-

tions.16,17 In the optical frequency domain the morphological

features of intracellular organelles are the key elements to

determine the diffraction image textures and our recent study

has shown that the image textures can be used to classify cells

of different morphology.11 To establish the correlation

between cell morphology and diffraction image textures, it is

necessary to develop an efficient approach for quantitative

extraction and analysis of 3D morphological features as well.

Several imaging methods with 3D capacity have been

developed over the last two decades that include, among

others, the confocal microscopy, X-ray diffraction micro-

scopy, digital holography or interferometry, optical computed

tomography and structured illumination.17–22 Despite these

achievements, quantitative study of 3D morphology is still a

venue of infrequent uses to most cell researchers for either

scarcity of specialized equipment and/or lack of accurate

software tools for rapid reconstruction and analysis. It is thus

highly desired to develop an approach for exploration of the

full potentials of 3D morphological analysis in cell assay with

easy accessibility to instrument, rapid data acquisition, robust

reconstruction algorithms and, most importantly, accurate

separation of intracellular organelles. For this purpose we

have selected the confocal microscopy as the method of 3D

imaging for its wide availability and our earlier work of

reconstruction related to the modeling study of diffraction

images of single cells.9,14 An improved fluorescent staining

protocol and a set of software tools have been developed to

perform confocal imaging, 3D reconstruction and quantitative

analysis of morphology. In this paper we present a quantitative

analysis of 3D cell morphology and functional measurements of

the B16F10 cell lines and their genetically engineered variations.

The results of the study demonstrate clearly that 3D analysis of

cell morphology yields new and valuable insights towards the

understanding of the mechanisms underlying regulation of

tumor cell migration and metabolism by the proton-sensing

GPR4 receptor.

Results

Confocal image stacks were acquired of three types of B16F10

cells, the B16/vector, B16/GPR4 and B16 parental cells, in

suspension between glass slides which allow acquisition of

image stacks across the whole volume of the cells without

interference of the slides. Each cell was randomly selected

from an imaged sample and a total of 65 to 67 cells were

imaged for each cell type. Selected confocal slice images from

one B16/vector cell are shown in Fig. 1 to illustrate the image

analysis algorithms. Fig. 2 presents multiple views of two cells’

3D morphology after reconstruction. For quantitative analysis

we extracted 31 morphological parameters for all cells in the

three groups based on the voxels of 0.070 mm sides in the x–y

plane and 0.073 mm side along the z-axis. As expected, the

parental cells of B16 display a high degree of similarity in their

3D morphological features with the B16/vector cells as shown

by their parameter values in Table 1. In the results presented

here, we focus our attention on the differences between the

B16/GPR4 cells and B16/vector cells as the control of the

genetic modification related to the GPR4 overexpression.

Statistical analysis of these parameters was performed with a

two-sample t-test to evaluate the significance of the differences

between the two cell types of B16/GPR4 and B16/vector and

between B16/vector and B16 as a control. Table 1 presents the

mean values and standard deviations of selected morphological

parameters for each of the three cell groups in additional to the

p- values obtained by the t-test method on the set of B16/GPR4

and B16/vector cells (p12) and the set of B16/vector and B16

cells (p23). The definitions of these parameters are given in the

notes under the table. The morphological parameters with

p12 o 0.05 in Table 1 are considered to exhibit statistically

significant differences between the two cell groups of B16/GPR4

and B16/vector. Based on this criterion it is clear that the B16/

GPR4 cells differ in their 3D morphology from the control cells

of B16/vector mainly in those associated with the spontaneous

protrusions and mitochondria, while the B16/vector cells

exhibit high degree of similarity to the B16 cells. Since the

cells imaged with confocal microscopy method were detached

and kept in suspension, it is intriguing to compare the

morphological data against functional measurements of these

cells under the adherent condition to investigate their relations.
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The comparison study can also prepare the groundwork for

future cell assay using the rapid method of diffraction imaging

flow cytometry.9,11,23

We measured the cell migration and oxygen consumption of

the B16/vector and B16/GPR4 cells under the adherent condition.

First, the effects of GPR4 on cell attachment and migration

were assessed with a time-lapse method using a phase contrast

microscope (EVOS, Advanced Microscopy Group). We have

previously shown that acidosis stimulation of GPR4 inhibits

the migration, invasion and metastasis of B16F10 melanoma

cells.8 Here, the time-lapse microscopy was used to further

examine the effects of GPR4 stimulation by acidic pH on cell

attachment and migration in real time. In the cell attachment

assay at pH 6.4, we noticed that B16/vector cells exhibit a

highly dynamic interaction with the substratum (Fig. 3 and

Video S1, ESIw). Spontaneously generated protrusions of these

cells were observed to make contact with the coverslip surface,

and the protrusions extended and retracted dynamically as the

components of cell attachment spread and migrate. In contrast,

B16/GPR4 cells appeared to generate very few surface protru-

sions (Fig. 3 and Video S2, ESIw), which is consistent with the

3D results performed on the same type of cells in suspension

unveiling much less number of protrusions (Fig. 2 and Table 1).

Furthermore, the attachment of B16/GPR4 cells to the cover-

slip was found to be substantially delayed. By 60 minutes after

plating, most B16/vector cells spread out and firmly attached to

the coverslip. In comparison the majority of B16/GPR4 cells

remained round up with minimal protrusions or spreading as

can be seen in Fig. 3 and the Videos S1 and S2 in the (ESIw). We

have also used the time-lapse microscopy to assess the effect of

GPR4 stimulation by acidic pH on B16F10 cell migration

in the wound closure assay which revealed much more

detailed information than previously reported using a snap-

shot method.8 The time-lapse microscopy results demonstrated

that, compared to B16/vector cells, B16/GPR4 cells at pH 6.4

exhibited multiple defects in cell migration (see Fig. 4, Videos S3

Fig. 2 Different views of the reconstructed 3D cell morphology: (A) three transparent views and one cut-off view of the B16/vector cell (#16); (B)

similar views of the B16/GPR4 cell (#22). In transparent (cut-off) views cytoplasm membranes are represented by light green (blue) colors, nuclear

membranes by grey-brown (green) colors and mitochondria by dark-green-yellow (light blue) colors.

Fig. 1 Raw and segmented confocal slice images acquired from one B16/vector cell (#16): (A) selected raw image slices in the red channel (nucleus

and cytoplasm), green channel (mitochondria and cytoplasm) and corresponding segmented images with pixels separated into 4 regions:

background (black), cytoplasm (light green), nucleus (dark pink) and mitochondria (dark yellow), the slice sequence number within the stack is

marked on each image in the first row; (B) the histograms of pooled pixels of all raw image slices in the red and green channels of the same cell with

a pair of arrows indicating the thresholds of I1 (local minimum) and I2 (peak) for each channel. Bar = 10 mm.
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and S4, ESIw). The extension of lamellipodia was impaired,

and several divergent leading edges were observed in some

B16/GPR4 cells. The detachment and retraction of the tail

(trailing edge) of a migrating cell were significantly impaired

in B16/GPR4 cells. As a result, B16/GPR4 migrating cells with

long un-detached tails were frequently observed. Moreover,

fluorescence microscopy of stained actin cytoskeleton showed

that, in migrating B16/vector cells treated with pH 6.4, actin is

predominantly accumulated in the leading edge. However, in

migrating B16/GPR4 cells, actin cytoskeleton existed as bundles

of stress fibers as can be observed from the two images

presented in Fig. 4(B). Processing and analysis of the time-lapse

cell migration images, with selected ones presented in Fig. 4(A),

provided the wound width as a functions of recording time as

shown in Fig. 4(C) for each cell monolayer. This allowed the

calculation of the average migration speeds of cells on the two

edges of the wound width before the close of the wound. We

found the speed as 59 mm h�1 for the B16/vector cells and

5.8 mm h�1 for the B16/GPR4 cells migrating at a markedly

reduced rate. Taken together, these results suggest that acidosis

activation of GPR4 induces a less dynamic actin cytoskeleton,

impairs cell protrusion formation, and inhibits cell spreading

and migration. Rigorous analysis of the protrusions and

other morphological features, however, is impractical with the

method of phase contrast microscopy. So we turned to the 3D

morphology analysis of suspension cells based on the confocal

image stacks.

To fully understand the morphological basis of different

migration behaviors, it is useful to extract certain parameters

from the 3D imaging study as the metric to quantify the shape

of cell membrane which includes the protrusions in both

adherent and suspension cells. We chose a distance parameter

of Rc defined as the distance between the voxels on the cell

surface and centroid of volume for each detached cell

measured by the confocal imaging method. A histogram of

the cell surface voxel number Nsc was generated for each cell

with Rc on the horizontal axis, which becomes a delta function

for a perfect sphere. In Table 1 the average values of Rc or hRci
among the three cell groups appear very similar to each other

Table 1 3D morphological parameters for three types of B16F10 cellsa

Parameter Symbol Unit

Mean � standard deviation

B16/GPR4
(n = 67) a

B16/vector
(n = 66) B16 (n = 65) p12

a p23
a

Cell volume Vc
b mm3 2987 � 582 2790 � 935 2874 � 886 0.148 0.602

Cell surface area Sc
c mm2 1422 � 220 1442 � 400 1479 � 370 0.717 0.593

Surface to volume ratio of cell SVrc mm�1 0.4774 � 0.0509 0.5307 � 0.06941 0.5279 � 0.0773 1.4 � 10�6 0.829
Index of surface irregularity of cell ISIc

d mm�1/2 249.0 � 22.2 266.8 � 34.9 273.4 � 36.9 6.3 � 10�4 0.295
Average distance of cell membrane voxels to centroid hRci mm 8.972 � 0.598 8.885 � 1.08 8.953 � 1.11 0.566 0.725
Standard deviation of Rc DRc mm 0.4990 � 0.213 0.9343 � 0.643 0.8744 � 0.595 5.8 � 10�7 0.581
Number of protrusions Np –– 4.820 � 7.44 13.95 � 10.5 10.60 � 11.1 2.3 � 10�6 0.955
Protrusion volume Vp mm3 99.86 � 92.8 252.97 � 157 352.7 � 333 2.5 � 10�10 0.037
Nuclear volume Vn mm3 916.8 � 227 874.1 � 255 864.6 � 240 0.310 0.825
Nuclear surface area Sn mm2 692.3 � 171 655.2 � 165 647.3 � 136 0.204 0.764
Index of surface irregularity of nucleus ISIn mm�1/2 217.1 � 20.8 217.2 � 34.4 218.4 � 24.1 0.982 0.825
Mitochondrial volume Vm mm3 192.9 � 64.8 146.6 � 72.2 149.4 � 71.0 1.5 � 10�4 0.823
Mitochondrial surface area Sm mm2 2201 � 751 1620 � 1036 1543 � 778 3.1 � 10�4 0.632
Surface to volume ratio of mitochondria SVrm mm�1 11.41 � 0.902 10.75 � 1.95 10.32 � 1.95 0.015 0.207
Index of surface irregularity of mitochondria ISIm mm�1/2 1495 � 295 1255 � 449 1211 � 341 3.8 � 10�4 0.528
Distance between the centroids of nucleus and cell Dnc mm 0.1221 � 0.0395 0.09668 � 0.0379 0.1106 � 0.0379 2.3 � 10�4 0.037
Volume ratio of nucleus to cell Vrnc –– 0.3079 � 0.0564 0.3161 � 0.0398 0.3048 � 0.0434 0.331 0.122
Volume ratio of mitochondrion to cell Vrmc –– 0.06488 � 0.0186 0.04993 � 0.0156 0.05141 � 0.0162 1.8 � 10�6 0.601

a n = number of imaged cells, p12 and p23 is based on two-sample t-test performed between the B16/GPR4 and B16/vector cells and between B16/

vector and B16 cells respectively with highlighted rows are of p12 o 0.05. b V = NvV0 with Nv as the number of voxels inside the organelle of

interest and V0 as voxel volume. c S= NsS0 with Ns as the number of voxels on the membrane of the organelle and S0 as the side surface of voxel.
d ISI = Nsa0/(V)

1/2 with a0 as the side length (= 0.07 mm) of voxel.

Fig. 3 Time-lapse phase contrast images of cell attachment assay: (A)

the attachment analysis of B16/vector cells and B16/GPR4 cells to the

coverslip at different time points; (B) the time-lapse view of protrusion

formation and spreading of B16/vector and B16/GPR4 cells (with the

video file in the ESIw). Bar = 40 mm.
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in terms of the mean values and standard deviations among all

cells in each group. But a close examination of the voxel

histograms between the B16/GPR4 and B16/vector cells leads

to the fact that these distributions are of distinctive features.

As an example, Fig. 5 displays the histograms of 4 cells for

each group of the B16/vector and B16/GPR4 cells. The cells in

the former group present much longer tails inNsc than those in

the latter as Rc increases and thus leads to a larger value of

standard deviation calculated from each histogram for each

cell as confirmed by the DRc in Table 1. Combined with the

protrusion data on each cell type shown in Table 1, these

results provide clear evidences to suggest that the B16/vector

cells, together with the parental cells of B16, may possess much

more dynamic cytoskeletal structures than the B16/GPR4

cells, which allow them to adapt to the substratum for

efficient migration when adherent and generate more

spontaneous protrusions when in suspension. Comparing the

quantitative 3D data for these cells in suspension with those of

the attached cells, we established clearly the fact that the

inhibition of spontaneous protrusions in the B16/GPR4 cells

can indeed reduce their ability to migrate significantly. One

should note that the numbers of Rc sampling for the

histograms were kept as the same at 1000 between the

minimum and maximum values of Rc for each cell with

nonzero values of cell surface voxel number Nsc. So the

mean values of the total number of Nsc for each cell groups

are approximately the same and are consistent with those of

the cell surface area Sc in Table 1 even though the areas under

curves in Fig. 5 appear quite different.

The quantitative results of 3D morphological study also

reveal several interesting features related to the potential

effects of GPR4 on the B16F10 cells. The inhibition of cell

protrusions by GPR4 has been correlated with its putative

function in the regulation of cell migration and cytoskeleton.8

The results presented in Table 1 further indicate that both

mitochondrial volume and surface to volume ratio increase

significantly in B16/GPR4 cells relative to both of the B16/

vector and B16 cells, which may affect cell respiration. To

further understand the effect of these structural variations, the

mitochondrial respiration of B16F10 melanoma cells was

measured using 5 samples for each cell type. This enabled us

to examine whether the maximal capacity of mitochondrial

oxygen consumption rate (OCR) is different between the

two cell lines for possible correlation to their morphological

differences. Cells were treated with the mitochondrial uncoupler

FCCP and the maximal OCR was measured using the Seahorse

XF analyzer as described in the Methods section. Fig. 6 shows

that the maximal OCR of B16/GPR4 cells are approximately

20–30% higher than that of B16/vector cells (p o 0.01). These

results can be compared with the values of mitochondrial

parameters in Table 1 where the volume Vm, surface Sm and

surface to volume ratio SVrm of the B16/GPR4 cells are all

significantly larger than those of the B16/vector cells. A more

detailed reading of the parameter distributions for the two

cell types as presented in Fig. 7 provides some interesting

observations on the effect of GPR4. In comparison with the

B16/GPR4 cells, the B16/vector cells are muchmore heterogeneous

in their distributions of the mitochondria parameters. Since both

Fig. 4 Time-lapse cell migration assay. (A) The phase contrast images of the migrating B16/vector and B16/GPR4 cells at different times (in

minutes) after the wound was generated (with the video file in the ESIw). Arrows indicate representative migrating cells and arrowheads indicate

lamellipodia (leading edge) of migrating cells. Please note the divergent lamellipodia of B16/GPR4 cells. (B) The fluorescence images of

rhodamine–phalloidin stained actin cytoskeleton of B16/vector and B16/GPR4 cells. (C) The time dependence of wound width sampled from 17

equally spaced bands along the vertical direction of the phase contrast images of migrating B16/vector and B16/GPR4 cells.
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surface area Sm and index of surface irregularity ISIm are

proportional to the numbers of voxels on the mitochondria

membrane, they distribute roughly along a line representing

their linear dependence on mitochondrial volume Vm for

majority of the B16/GPR4 cells. Hence one can quickly

realize that not only do the B16/vector cells deviate from the

line towards the region of smaller Vm but they tend to have

smaller Sm than their B16/GPR4 counterparts having the same

Vm. This leads to the significant difference in the surface to

volume ratio of mitochondria SVrm for the different cell types

as shown in Table 1. We may further remark that difference in

SVrm may have more bearing on the results in Fig. 6 than the

difference Vm because the former could markedly influence the

uptake and release of metabolically important molecules including

oxygen during the OCR measurements, as well known for other

organelles.24 Nevertheless the molecular basis of the above

observations with cells conditioned differently remains to be

fully investigated.

Discussion and conclusions

Our results based on both of the 3D morphological analysis

and functional measurement yield several intriguing insights

into how the acidic tumor microenvironment regulates cancer

cell behavior through the proton-sensing GPR4 receptor

beyond what was known.8,25–28 First, acidosis stimulation of

GPR4 affects actin subcellular localization and stress fiber

formation in migrating B16F10 melanoma cells (Fig. 4B),

inhibits cells’ ability to generate protrusions and to spread

(Fig. 2 and 3), and impairs the dynamics of lamellipodia

formation and tail retraction (Fig. 4A and Videos S3 and S4,

ESIw). These observations are consistent with the previously

reported biological effects of GPR4 to inhibit tumor cell

migration and metastasis and the biochemical function to

activate the G13/Rho pathway upon acidic pH stimulation.8,26

Furthermore, our preliminary results show that inhibiting

the Rho GTPase by C3 transferase can partially rescue the

attachment defect of B16/GPR4 cells (C.R.J and L.V.Y,

unpublished observation). Second, our results have revealed

a potentially novel molecular connection between the acidic

tumor microenvironment and cancer cell metabolism. Decades

ago Otto Warburg observed that cancer cells rely heavily on

glycolysis rather than oxidative phosphorylation for ATP

production and proposed that cancer cell mitochondria are

defective and this defect serves as the cause of tumorigenesis.29

Numerous studies published subsequently confirmed that glycolysis

is commonly increased in many types of tumors.4,30,31 Recent

studies also demonstrated that glycolysis is directly regulated by

some oncogenes and tumor suppressors and by adaptation to the

Fig. 5 Histograms of the cell surface voxel number Nsc of 4 cells in

the groups of (A) B16/vector; (B) B16/GPR4 with Rc as the radial

distance between cell surface voxels and the centroid of cell. Each

curve is labeled by the cell sequence number in its group with two

shown in Fig. 1 and 2.

Fig. 6 Maximum mitochondrial oxygen consumption rates (OCR)

between the B16/GPR4 and B16/vector cells measured with 5 samples

for each cell type and ** indicating p o 0.01 by t-test.

Fig. 7 2D and 3D scatter plots of mitochondrial parameters of

surface area Sm, volume Vm and index of surface irregularity ISIm
for the B16/vector and B16/GPR4 cells.
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tumor microenvironment.4,30–32 Contrary to Warburg’s original

proposal, however, the respiration capacities of many cancer cells

are not defective per se but instead inhibited by certain molecular

mechanisms.32–34 Here we observed that overexpression of the

GPR4 receptor in B16F10 melanoma cells increases the total

volume and surface to volume ratio of mitochondria which is

corroborated by an increase in maximal capacity of mitochondrial

OCR. Further research is therefore warranted to investigate

the detailed molecular mechanisms by which the acidic tumor

microenvironment and the proton-sensing GPR4 receptor

regulate the metabolism of cancer cells and how cell meta-

bolism is potentially related to cancer metastasis.35 Third, we

have developed an efficient and powerful approach to utilize

the readily available confocal microscopy method for quanti-

tative characterization and analysis of the 3D morphology of

cells and subcellular organelles. Even though the quantitative

results of morphology were obtained from detached cells in

suspension, it has been shown that these results are consistent

with the functional analyses of cell migration and respiration

under the adherent condition. Still we need to point out that

the results obtained from cells conditioned differently are of

indirect nature and subsequent interpretations need to be

carefully verified with further studies. Finally, we have demon-

strated that the approach of 3D morphological analysis pre-

sented here can serve as a valuable tool for the study of cell

functions. The presented approach of imaging and reconstruc-

tion is also sufficiently robust to be extended to different

subcellular organelles with appropriate fluorescence labeling

dyes and help lay the foundation for development of other

morphology based methods of cell assay.

Methods

Three types of B16F10 cells

The culture of malignant mouse B16F10 melanoma cells and

the generation of the genetically engineered B16/vector cells

and B16/GPR4 cells have been previously described.8 Briefly,

B16F10 melanoma cells were stably transduced with the

MSCV-GPR4-IRES-GFP retroviral construct to over-express

the wild-type human GPR4 receptor or with the MSCV-IRES-

GFP vector as a control. The two genetically engineered cell lines

are called as B16/GPR4 and B16/vector cells, respectively.

Confocal imaging

The cells to be imaged were first detached from culture plates

using trypsin/EDTA followed by staining. The fluorescent

dyes of Syto 61 and MitoTracker Orange (Life Technologies)

were chosen for staining the nucleus and mitochondria of the

live cells, respectively. After incubation in culture media with

the two dyes for 30 minutes at 37 1C followed by one wash, the

cells were loaded in clear culture medium between a dipped

glass slide and cover glass as a suspension sample for imaging

with a laser scanning confocal microscope (LSM510, Zeiss).

We employed a 63� water-immersion objective with a 4� scan

zoom on the acquired image slices. Each image stack consisted

of about 40 to 60 slices with a 0.5 mm step size in air along the

z-axis.

Image segmentation. Segmentation started with a histogram

analysis to select two thresholds of pixel intensity I for

segmentation. To reduce fluctuations, pixels of all slices in

the image stack were pooled in each false-color channel to

produce a histogram. As shown in Fig. 1(B), the largest peak

of the histogram occurs at or near I= 0 in both of the red and

green channels since most extracellular pixels are of lowest

intensities. Consequently we used the first minimum after the

above peak as a reliable threshold of I1 to zero most

extracellular pixels of I o I1. The intensity of the next peak

in the histogram I2 was picked as the second threshold to

identify the intracellular and mitochondria pixels in the red

and green channels, respectively. The two thresholds are

indicated with arrows in each histogram curve in Fig. 1B.

After the histogram analysis was done for each of the two

channels, slices in each channel were then processed separately

for segmentation of different organelles before they are

recombined to output the final 3D structure files.

The borderlines representing the membranes of cell and

nucleus were obtained in each slice by iterating the following

algorithms. A Sobel operator was used to derive the spatial

gradient slices of dI for detection of edges in the cleaned slices

stack to identify the cell membrane. From the gradient images

two derivative thresholds of dI1 and dI2 were chosen to mark

the cytoplasm and nuclear membranes and obtain two binary

stacks respectively. The first binary stack assigns the intensity

I = 1 for all pixels with either derivative dI > dI1 as those on

the cytoplasmic membrane or with I > I1 as the intracellular

pixels and I = 0 for rest of the pixels as the background. The

other binary stack of nucleus was obtained similarly except dI2
replaces dI1. The two binary stacks were further refined with

opening and closing operations to remove the ‘‘wrong’’ pixels

in the regions separated by the borderline of membrane.36 In

the green channel the cytoplasm membrane was first detected

to output a binary stack. The two cytoplasm stacks from the

two channels were compared and the one with larger areas in

each slice was selected as the final output. For accurate

segmentation of mitochondria, additional algorithms had to

be employed because of their much smaller sizes, which include

adaptive median filtering with auto-adjusted window size for

smoothing and watershed algorithms to increase the accuracy in

delineating clusters within aggregated mitochondria pixels.37,38

The final step was to combine the segmented stacks of

cytoplasm, nucleus and mitochondria into an 8-bit gray-scale

stack in which each pixel was given an intensity as an index of

organelle and fluorescence intensity bin. Fig. 1(A) presents the

raw confocal and segmented slices selected from a stack.

3D reconstruction

After segmentation additional slices were added through inter-

polation to obtain a stack with cubic voxels. Because of the

refraction of the fluorescence light at various interfaces from the

emitting molecules to the microscope objective, the distance of

sample translation Dz0 is larger than the actual slice separation

Dz in the raw image stack.39 Using fluorospheres of nominal

diameter at 10 mm under the same confocal imaging conditions

we have determined the correction factor to be f = Dz/Dz0 =
0.862 by requiring isotropic diameters for the microsphere.
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Following the z-axis calibration 5 slices were added between

the neighboring slices using a shape-based interpolation algo-

rithm.40 With this method, we calculated a signed shortest

distance of each pixel at (x, y) in a segmented slice to the

membrane of a particular organelle of cytoplasm, nucleus and

mitochondria. The sign was determined by if the pixel is inside

the organelle. For each interpolated slice the signed shortest

distance of each pixel at (x, y) is obtained by averaging the two

distances of the pixels at (x, y) in the two segmented slices

neighboring the new one with weights proportional to the

separations between the new and segmented slices. The orga-

nelle membrane in the new slice could thus be identified by

those pixels of zero distances. For confocal image stacks with

up to 60 slices, the typical calculation times of 3D reconstruc-

tion on a 2 GHz dual-core PC ranged from 10 to 15 minutes.

After reconstruction multiple 3D morphological parameters

were calculated for the organelles of cytoplasm, nucleus and

mitochondria and values of selected parameters are presented

in Table 1. The notes under Table 1 provide the parameter

definitions.

Cell attachment and migration assays

B16/Vector and B16/GPR4 cells were detached from culture

plates using trypsin/EDTA. After washed once with media,

cells were resuspended in culture media, added onto a glass

coverslip and incubated in a sealed chamber with 5% CO2 at

37 1C. Cell attachment was recorded in real-time using a time-

lapse digital inverted phase microscope (EVOS, Advanced

Microscopy Group) after cell plating over a time course of

1 h. For the migration assays B16/Vector and B16/GPR4 cells

were cultured to 100% confluence in 6-well plates. A wound of

the cell monolayer was generated using a pipette tip and the

cells were then incubated in a sealed chamber with 5% CO2 at

37 1C. Cell migration was recorded for 16 h. Four video files

made out of these images are provided in the ESI.w The images

were used to analyze the morphological features of migrating

cells and to identify the edges of the wound with a threshold

based image processing algorithm. The vertical wound in the

images was divided into 17 bands of equal height and 5 rows of

pixels in each band were used to obtain the average width of

the wound in that band after image processing and edge

detection. Compilation of the wound width or distance

between the edges of the monolayer on two sides of the

wound width among the time-lapsed images yielded the cell

migration data as a function of time at multiple locations

along the edges to quantify cell migration dynamics. Actin

cytoskeleton staining was applied to cells grown on a glass

coverslip which were fixed with 4% formaldehyde for 10 min,

and the rhodamine phalloidin staining of actin cytoskeleton

was performed as previously described.8

Measurement of mitochondrial OCR

We measured the oxygen consumption rate (OCR) of B16/

Vector and B16/GPR4 cells with an extracellular flux analyzer

(XF24, Seahorse Bioscience Inc.) by following the manufacturer’s

instruction. Briefly, 10000 cells per well were seeded into the

24-well Seahorse microplates and cultured with DMEM+10%

FBS media overnight. The next day, cells were switched to the

assay buffer (DMEM without bicarbonate or HEPES) and

treated with 0.5 mM uncoupler FCCP (Carbonyl cyanide-p-

trifluoromethoxyphenylhydrazone) to allow maximal cell

respiration. The maximal total OCR was measured using the

flux analyzer. Then cells were treated with 1 mM antimycin A

and 1 mM rotenone to measure non-mitochondrial OCR which

was subtracted from the total OCR to calculate the maximal

mitochondrial OCR. Data were normalized by total protein

using the sulforhodamine B assay (Sigma-Aldrich). Five

groups of samples were measured for each cell type to obtain

the mean values and standard error of the mean (SEM).

Statistical analysis

The method of two-sample t-test was chosen for examination

of the morphological similarity among the three types of B16

cells. The statistical method allows the testing of equality of

means between two selected cell types of equal or unequal

variances. The two-sample t-tests of the parameters in Table 1

were performed with the SPSS software (Version 19, IBM) to

obtain the values of p12 and p23, respectively, for each 3D

parameters between two cell types as noted in the table. The

OCR data in Fig. 6 was analyzed using the t-test with the

Prism software (Version 5, GraphPad Software).
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